Приложение № 5 к программе подготовки научных и научно-педагогических кадров в аспирантуре НИЦ «Курчатовский институт» по научной специальности 1.3.14. Теплофизика и теоретическая теплотехника

РАБОЧАЯ ПРОГРАММА

по специальной дисциплине «Теплофизика и теоретическая теплотехника»

1. Цель и задачи освоения дисциплины

Целью освоения дисциплины «Теплофизика и теоретическая теплотехника» являются углубленное изучение термодинамики, теории теплофизических свойств веществ, процессов переноса тепла и массы в сплошных и разреженных гомогенных средах.

Цели изучения дисциплины «Теплофизика и теоретическая теплотехника» включают освоение методов теоретического описания и численного моделирования массо-и теплообмена.

2. Место дисциплины в структуре программы подготовки научных и научно-педагогических кадров

Дисциплина «Теплофизика и теоретическая теплотехника» входит в образовательный компонент и является специальной дисциплиной программы подготовки научных и научно-педагогических кадров для научной специальности 1.3.14. «Теплофизика и теоретическая теплотехника».

В соответствии с учебным планом занятия проводятся на первом, втором году обучения (во втором, третьем, четвертых семестрах). Кандидатский экзамен сдается в четвертом семестре.

Объем дисциплины составляет 396 часов (11 зачетных единиц), 198 часов составляет контактная работа обучающегося из которых семинарского с преподавателем (лекции, занятия типа, групповые консультации, мероприятия и индивидуальные текущего контроля успеваемости и итогового контроля). Самостоятельная работа обучающегося составляет 198 часов. Текущий контроль успеваемости реализуется в рамках занятий семинарского типа, групповых и/или индивидуальных консультаций.

3. Требования к результатам освоения дисциплины

Данная дисциплина участвует в формировании следующих компетенций:

1) способность к критическому анализу и оценке современных

научных достижений, генерированию новых идей при решении исследовательских и практических задач, в том числе в междисциплинарных областях;

- 2) способность планировать и решать задачи собственного профессионального и личностного развития;
- 3) владеть методологией теоретических и экспериментальных исследований в области профессиональной деятельности;
- 4) владеть культурой научного исследования, в том числе с использованием современных информационно-коммуникационных технологий;
- 5) способность самостоятельно ставить конкретные задачи научных исследований в области теплофизики и теоретической теплотехники, и решать их с помощью современной аппаратуры и информационных технологий с использованием новейшего отечественного и зарубежного опыта;
- 6) способность принимать участие в разработке новых методов и методических подходов в научных исследованиях в области теплофизики и теоретической теплотехники.

В результате освоения данной дисциплины аспирант должен знать:

- 1) методы и способы постановки и решения задач теплофизических исследований, принципы действия, функциональные и метрологические возможности современной аппаратуры для физических исследований, возможности, методы и системы компьютерных технологий для физических теоретических и экспериментальных исследований;
- 2) существующие методы и методические подходы в научных исследованиях в области теплофизики и теоретической теплотехники и возможные способы их развития;

В результате освоения данной дисциплины аспирант должен уметь:

- 1) самостоятельно ставить и решать конкретные физические задачи научных исследований в области теплофизики и теоретической теплотехники с использованием современной аппаратуры и компьютерных технологий;
- 2) критически анализировать современные методы и методические подходы в научных исследованиях в области теплофизики и теоретической теплотехники, выбирать способы решения поставленной задачи и разрабатывать программу развития существующих методов исследования;

В результате освоения данной дисциплины аспирант должен владеть:

- 1) навыками постановки и решения задач научных исследований в области теплофизики и теплотехники с помощью современных методов и средств теоретических и экспериментальных исследований;
- 2) навыками модернизации экспериментальной аппаратуры, разработки и модификации расчетно-теоретических и численных методов научных исследований в области теплофизики и теоретической теплотехники;
 - 3) современными методами научного анализа массо-и теплообмена.

4. Объем дисциплины, виды учебной работы (в часах), структура и содержание дисциплины

4.1. Объем и виды учебной работы (в часах) по дисциплине в целом

Вид учебной работы	Всего часов		
Общая трудоемкость базового модуля	396		
дисциплины			
Аудиторные занятия (всего)	198		
В том числе:			
Лекции (Л)	144		
Семинары/практические занятия (С/ПрЗ)	54		
Самостоятельная работа (СР)	198		
В том числе *:			
Форма текущего контроля	реферат, контрольная работа,		
	(домашние задания,		
	индивидуальные и групповые		
	консультации)		
Форма итогового контроля	экзамен (КЭ)		
(промежуточная аттестация)			

⁻ приводятся все виды самостоятельной работы по данной дисциплине

4.2. Структура и содержание дисциплины

№	Наименование разделов, тем	Часы			
темы	дисциплины	Всего	Л	С/ПрЗ	CP
1	2	3	4	5	6
1	Термодинамика. Основы, первый и				
	второй законы термодинамики.	76	27	9	40
	Равновесие термодинамических				
	систем и фазовые переходы,	70	21	9	
	термодинамические свойства				
	веществ				
2	Термодинамические процессы,				
	истечение газов и жидкостей,	29	9	9	11
	термодинамические циклы				
3	Тепломассообмен.			9	32
	Теплопроводность. Конвективный	77	36		
	теплообмен в однокомпонентной	/ /	30		
	среде, свободная конвекция				
4	Теплообмен при внешнем		9	9	11
	обтекании тела. Теплообмен при	29			
	течении жидкости в каналах				
5	Теплообмен при фазовых				
	превращениях. Теплообмен	108	27	9	72
	излучением				
6	Теплофизические свойства				
	теплоносителей ядерных				
	реакторов. Основы расчета	77	36	9	32
	теплообменных аппаратов и	, ,			52
	теплогидравлического расчёта				
	активных зон ядерных реакторов				
Всего		396	144	54	198

4.2.1 Содержание лекционного курса

№	Всего	Солеруение разленов писнипници		
темы	часов	Содержание разделов дисциплины		
1	2	3		
1	9	Основы термодинамики. Параметры состояния. Понятие		
		о термодинамическом процессе. Законы идеального газа.		
		Первый закон термодинамики. Закон сохранения		
		и превращения энергии. Внутренняя энергия и внешняя		
		работа. Энтальпия. Уравнение первого закона		
		термодинамики. Второй закон термодинамики		
1	9	Равновесие термодинамических систем и фазовые переходы.		
		Гомогенные и гетерогенные термодинамические системы.		

		Термодинамическое равновесие. Условия фазового		
		равновесия. Фазовые переходы. Уравнение Клапейрона-		
		Клаузиуса. Термодинамические свойства веществ.		
		Термические и калорические свойства жидкостей.		
		Критическая точка. Уравнение Ван-дер-Ваальса. Уравнение		
		состояния реальных газов		
1	9	Термодинамические свойства веществ на линии фазовых		
1		переходов и в критической точке. Термодинамические		
		свойства вещества в метастабильном состоянии. Основные		
		термодинамические процессы. Изохорный процесс.		
		Изобарный процесс. Изотермический процесс		
2	9	Процессы истечения газов и жидкостей. Параметры		
		торможения. Сопло, диффузор. Полное и статическое		
		давление. Уравнение Бернулли. Число Маха. Показатель		
		адиабаты. Термодинамические циклы. Термический КПД.		
		Циклы Карно, Отто, Дизеля, Брайтона, Ренкина		
3	9	Физические основы процессов переноса тепла и массы.		
		Теплоотдача и теплопередача. Основные критерии подобия		
		и их физический смысл		
3	9	Теплопроводность. Уравнение сохранения энергии, закон		
		Фурье, краевые условия задач теплопроводности. Механизм		
		теплопроводности веществ в твердом (кристаллическом		
		и аморфном), жидком и газообразном состояниях.		
		Теплопроводность через плоскую стенку. Число Био. Коэффициент теплопередачи. Теплопроводность через		
		цилиндрическую стенку, критический диаметр изоляции		
3	9	Конвективный теплообмен в однокомпонентной среде.		
		Уравнения сохранения массы, импульса и энергии в		
		сплошной среде. Теплообмен при внешнем обтекании тела.		
		Переход ламинарного течения в турбулентное, влияние		
		на турбулентный переход параметров набегающего потока,		
		массовых сил, характеристик обтекаемой поверхности.		
		Осредненные уравнения движения и энергии для		
		турбулентного течения. Структура пристенной турбулентной		
		области. Конвективный теплообмен при высоких скоростях		
		течения. Адиабатическая температура стенки, коэффициент		
		восстановления, методы расчета теплоотдачи. Теплообмен		
		при поперечном обтекании одиночного цилиндра и пучков		
		труб		
3	9	Теплообмен при свободной конвекции. Механизм		
		и математическое описание, приближение Буссинеска.		
		Развитие пограничного слоя на вертикальной плоской		
		поверхности, расчет коэффициента теплоотдачи. Свободная		
		конвекция на поверхности горизонтального цилиндра		
L	<u> </u>	Topiconiaminio		

		и сферы
4	9	Теплообмен при течении жидкости в каналах. Математическое описание, среднемассовая скорость и температура. Стабилизированный теплообмен при граничных условиях 2-го рода. Профили скорости, температуры, теплового потока при ламинарном и турбулентном течении, интеграл Лайона. Теплообмен при ламинарном течении жидкости в начальном термическом участке круглой трубы. Начальный гидродинамический участок
5	9	Теплообмен при фазовых превращениях. Математическое описание и модели двухфазных сред. Кипение жидкостей. Условия зарождения парового зародыша в объеме перегретой жидкости и на твердой поверхности нагрева. Основные закономерности роста и отрыва паровых пузырьков. «Кривая кипения». Теплообмен при пузырьковом кипении в большом объеме, теплообмен при пленочном кипении. Кризисы кипения в большом объеме. Режимы течения двухфазных потоков в трубах. Характер изменения среднемассовой температуры жидкости, температуры стенки, расходного массового паросодержания по длине обогреваемого канала. Кипение жидкости, недогретой до температуры насыщения. Кризис теплоотдачи при кипении в трубах
5	9	Пленочная и капельная конденсация. Теплообмен при пленочной конденсации на вертикальной поверхности: решение Нуссельта, анализ основных допущений
5	9	Теплообмен излучением. Основные понятия и законы излучения. Природа излучения. Интегральная и спектральная плотности потока излучения. Поглощательная, отражательная и пропускательная способности тел. Абсолютно черное тело. Законы теплового излучения (Планка, Вина, Стефана-Больцмана, Кирхгофа, Ламберта). Излучение реальных тел. Геометрия излучения (локальные и средние угловые коэффициенты)
6	9	Теплофизические свойства теплоносителей ядерных реакторов
6	9	Современные теплообменные системы: парогенераторы тепловых электрических станций, ядерные энергетические реакторы
6	9	Основы теплофизического эксперимента
6	9	Методы компьютерного моделирования динамики жидкости

		и теплообмена
--	--	---------------

4.2.2 Содержание семинаров и (или) практических занятий

No	Всего	Содержание разделов дисциплины	
темы	часов		
1	2	3	
1	9	Решение задач по термодинамике	
2	9	Решение задач по тепло и массообмену	
3	9	Основы расчёта теплообменных аппаратов	
1	9	Основы теплогидравлического расчёта активных зон	
4	9	ядерных реакторов	
5	методы компьютерного моделирования динами		
3	9	и теплообмена	
6	9	Основы теплофизического эксперимента	

5. Образовательные технологии

- 1. При реализации настоящей дисциплины предусмотрено применение следующих образовательных технологий: лекции-визуализации (все лекции сопровождаются презентациями), проблемные лекции с дискуссией (на каждой лекции рассматриваются проблемные вопросы по актуальным направлениям развития предмета).
- 2. В учебном процессе помимо чтения лекций широко используются активные и интерактивные формы. Совместное и самостоятельное решение аспирантами задач по темам лекций на занятиях семинарского типа, самостоятельное изучение предложенных тем и выступление с докладами на занятиях.

В сочетании с внеаудиторной работой это способствует формированию и развитию профессиональных навыков обучающихся.

6. Учебно-методическое обеспечение самостоятельной работы аспирантов.

Оценочные средства для текущего контроля успеваемости, промежуточной аттестации по итогам освоения дисциплины

No	Всего	Вопросы для	
		самостоятельного изучения	Литература
темы	часов	(задания)	
1	2	3	4
1	8	Обратимые и необратимые	1. Кириллин В.А., Сычев
		процессы	В.В., Шейндлин А.Е.
1	8	Формулировка второго	Техническая термодинамика.
		закона термодинамики	Издание 4-е. М.:
1	8	Объединенное уравнение	Энергоатомиздат, 1983.
		первого и второго законов	2. Базаров И.П.
		термодинамики	Термодинамика. Издание 2-е.
1	8	Термические и	– М.: Высшая школа, 1976.
		калорические свойства	3. Новиков И.И.
		реальных газов и влажного	Термодинамика. – М.:
		воздуха	Машиностроение, 1984.
1	8	Политропные процессы	4. Шпильрайн Э.Э.,
2	11	Регенерация теплоты в	Кессельман П.М. Основы
		цикле	теории теплофизических
			свойств веществ. – М.:
			Энергия, 1977.
3	8	Проблемы и особенности	1. Кириллов П.Н.,
		процессов теплообмена в	Богословский Г.П.
		ядерной энергетике	Теплообмен в ядерных
3	8	Нестационарное	энергетических установках. –
		температурное поле в	М.: Энергоатомиздат, 2000.
		плоской пластине,	2. Кутателадзе С.С. Основы
		регулярный режим	теории теплообмена. – М.:
		охлаждения (нагревания)	Атомиздат, 1979. – 415 с.
		тел	3. Петухов Б.С., Генин Л.Г.,
3	8	Метод перемножения	Ковалев С.А. Теплообмен в
		решений	ядерных энергетических
3	8	Свободная конвекция в	установках. – М.:
		замкнутых объёмах	Энергоатомиздат, 1986.
4	11	Стабилизированный	4. Лабунцов Д.А., Ягов В.В.
		теплообмен при	механика двухфазных сред. –
		ламинарном течении.	М.: Изд-во МЭИ, 2000.
		Стабилизированный	
		теплообмен при	
		турбулентном течении	
5	8	Неравновесность на	
		межфазных границах,	
		квазиравновесное	
		приближение	
5	8	Конденсация на	

		поверхности	
		горизонтального цилиндра	
5	8	Конденсация движущегося	1. Кириллов П.Н.,
		пара	Богословский Г.П.
5	8	Качественные	Теплообмен в ядерных
		закономерности капельной	энергетических установках. –
		конденсации	М.: Энергоатомиздат, 2000.
5	8	Зональный метод расчета	2. Кутателадзе С.С. Основы
		теплообмена в системе тел,	теории теплообмена. – М.:
		разделенных прозрачной	Атомиздат, 1979. – 415 c.
		средой	3. Петухов Б.С., Генин Л.Г.,
5	8	Универсальные условия	Ковалев С.А. Теплообмен в
		совместности на	ядерных энергетических
		межфазных границах	установках. – М.:
5	8	Специальные условия	Энергоатомиздат, 1986.
		совместности для процессов	4. Лабунцов Д.А., Ягов В.В.
		тепло- и массообмена	механика двухфазных сред. –
5	8	Радиационные свойства	М.: Изд-во МЭЙ, 2000.
		реальных материалов	5. Роуч П. Вычислительная
5	8	Теплообмен излучением в	гидродинамика. – М.: Мир,
		диатермичной среде	1980.
6	8	Теплообменные аппараты:	6. Тепло-и массообмен
		рекуперативные,	теплотехнический
		регенеративные,	эксперимент / Справочник /
		смесительные	Под общ. Ред. В.А.
6	8	Уравнения теплового	Григорьева, В.М. Зорина. М.:
		баланса и теплопередачи.	Энергоатомиздат, 1982. – 518
		Средний температурный	c.
		напор	
6	8	Расчет поверхности	
		теплообмена, конечной	
		температуры	
		теплоносителей	
6	8	Основы гидравлического	
		расчета теплообменников.	
		Определение мощности,	
		затрачиваемой на прокачку	
		теплоносителей	
<u> </u>			

Текущий контроль успеваемости проводится на каждом семинарском занятии. Критерии формирования оценки — посещаемость занятий,

активность аспирантов, выполнение контрольных работ (контрольные работы рассчитаны на 10-15 мин.).

Примеры контрольных вопросов и заданий для проведения текущего контроля и промежуточной аттестации по итогам освоения дисциплины (работы состоят из контрольных вопросов, тестовых заданий и задач).

Примеры контрольных вопросов:

- 1. Основные критерии подобия и их физический смысл.
- 2. Законы идеального газа.
- 3. Первый закон термодинамики.
- 4. Закон сохранения и превращения энергии.
- 5. Внутренняя энергия и внешняя работа.
- 6. Энтальпия.
- 7. Уравнение первого закона термодинамики.
- 8. Второй закон термодинамики.
- 9. Обратимые и необратимые процессы.
- 10. Равновесие термодинамических систем и фазовые переходы.
- 11. Гомогенные и гетерогенные термодинамические системы.
- 12. Термодинамическое равновесие.
- 13. Условия фазового равновесия.
- 14. Фазовые переходы.
- 15. Уравнение Клапейрона-Клаузиуса.
- 16. Уравнение Ван-дер-Ваальса.
- 17. Термические и калорические свойства реальных газов и влажного воздуха.
 - 18. Уравнение состояния реальных газов.
- 19. Термодинамические свойства веществ на линии фазовых переходов и в критической точке.
 - 20. Изохорный процесс.
 - 21. Изобарный процесс.
 - 22. Изотермический процесс.

- 23. Политропные процессы.
- 24. Процессы истечения газов и жидкостей. Сопло, диффузор.
- 25. Полное и статическое давление. Уравнение Бернулли.
- 26. Число Маха.
- 27. Показатель адиабаты.
- 28. Термодинамические циклы.
- 29. Термический КПД.
- 30. Циклы Карно, Отто, Дизеля, Брайтона, Ренкина.
- 31. Уравнение сохранения энергии, закон Фурье, краевые условия задач теплопроводности.
- 32. Механизм теплопроводности веществ в твердом (кристаллическом и аморфном), жидком и газообразном состояниях.
 - 33. Теплопроводность через плоскую стенку.
 - 34. Число Био.
 - 35. Коэффициент теплопередачи.
- 36. Теплопроводность через цилиндрическую стенку, критический диаметр изоляции.
- 37. Нестационарное температурное поле в плоской пластине, регулярный режим охлаждения (нагревания) тел.
 - 38. Конвективный теплообмен в однокомпонентной среде.
- 39. Уравнения сохранения массы, импульса и энергии в сплошной среде.
 - 40. Теплообмен при внешнем обтекании тела.
- 41. Осредненные уравнения движения и энергии для турбулентного течения.
 - 42. Структура пристенной турбулентной области.
 - 43. Конвективный теплообмен при высоких скоростях течения.
 - 44. Адиабатическая температура стенки, коэффициент восстановления.
- 45. Теплообмен при поперечном обтекании одиночного цилиндра и пучков труб.

- 46. Решение задач по тепло и массообмену.
- 47. Теплообмен при течении жидкости в каналах.
- 48. Математическое описание, среднемассовая скорость и температура.
- 49. Стабилизированный теплообмен при граничных условиях 2-го рода.
- 50. Профили скорости, температуры, теплового потока при ламинарном и турбулентном течении, интеграл Лайона.
- 51. Теплообмен при ламинарном течении жидкости в начальном термическом участке круглой трубы.
 - 52. Начальный гидродинамический участок.
 - 53. Стабилизированный теплообмен при ламинарном течении.
 - 54. Стабилизированный теплообмен при турбулентном течении.
 - 55. Теплообмен при свободной конвекции.
 - 56. Механизм и математическое описание, приближение Буссинеска.
- 57. Развитие пограничного слоя на вертикальной плоской поверхности, расчет коэффициента теплоотдачи.
- 58. Свободная конвекция на поверхности горизонтального цилиндра и сферы.
 - 59. Свободная конвекция в замкнутых объёмах.
 - 60. Математическое описание и модели двухфазных сред.
- 61. Условия зарождения парового зародыша в объеме перегретой жидкости и на твердой поверхности нагрева.
 - 62. Основные закономерности роста и отрыва паровых пузырьков.
 - 63. Кривая кипения.
- 64. Теплообмен при пузырьковом кипении в большом объеме, теплообмен при пленочном кипении.
 - 65. Кризисы кипения в большом объеме.
 - 66. Режимы течения двухфазных потоков в трубах.
- 67. Характер изменения среднемассовой температуры жидкости, температуры стенки, расходного массового паросодержания по длине обогреваемого канала.

- 68. Кипение жидкости, недогретой до температуры насыщения.
- 69. Кризис теплоотдачи при кипении в трубах.
- 70. Универсальные условия совместности на межфазных границах.
- 71. Неравновесность на межфазных границах, квазиравновесное приближение.
 - 72. Пленочная и капельная конденсация.
- 73. Теплообмен при пленочной конденсации на вертикальной поверхности: решение Нуссельта, анализ основных допущений.
 - 74. Конденсация на поверхности горизонтального цилиндра.
 - 75. Конденсация движущегося пара.
 - 76. Качественные закономерности капельной конденсации.
 - 77. Теплообмен излучением. Природа излучения.
 - 78. Интегральная и спектральная плотности потока излучения.
- 79. Поглощательная, отражательная и пропускательная способности тел.
 - 80. Абсолютно черное тело.
- 81. Законы теплового излучения (Планка, Вина, Стефана-Больцмана, Кирхгофа, Ламберта).
 - 82. Излучение реальных тел.
 - 83. Радиационные свойства реальных материалов.
 - 84. Теплообмен излучением в диатермичной среде.
- 85. Геометрия излучения (локальные и средние угловые коэффициенты).
- 86. Зональный метод расчета теплообмена в системе тел, разделенных прозрачной средой.
 - 87. Теплофизические свойства теплоносителей ядерных реакторов.
- 88. Современные теплообменные системы: парогенераторы тепловых электрических станций, ядерные энергетические реакторы.
- 89. Теплообменные аппараты: рекуперативные, регенеративные, смесительные.

90. Средний температурный напор.

Промежуточная аттестация проводится на 9 неделе путем подведения итогов контрольных работ, написанных на состоявшихся лекциях.

Итоговый контроль – экзамен (КЭ).

Примеры вопросов к экзамену:

- 1. КПД тепловой машины. КПД цикла Карно. Теорема Карно.
- 2. Различные формы записи уравнения состояния идеального газа. Уравнение адиабаты идеального газа. Работа, совершаемая идеальным газом при политропическом и адиабатическом процессе. Физический смысл энтропии идеального газа.
- 3. Сила и плотность тока. Закон Ома и закон Джоуля-Ленца в интегральной и дифференциальной формах. Мощность тока. Удельная тепловая мощность тока.
- 4. Экспериментальные законы теплового излучения (Стефана-Больцмана, Вина).
- Электроемкость. Конденсаторы. Емкость плоского конденсатора.
 Энергия заряженного конденсатора. Энергия электрического поля.
 Плотность энергии
 - 6. Эффект Доплера для звуковых и электромагнитных волн.
- 7. Линейное дифференциальное уравнение произвольного порядка с постоянными коэффициентами. Методы его решения.
 - 8. Понятие матрицы. Определитель матрицы и его вычисление.
- 9. Понятие первообразной функции. Вычисление неопределенных и определённых интегралов, в том числе несобственных.
- 10. Понятие производной функции. Основные правила дифференцирования функций. Нахождение экстремумов функции.
- 11. Понятие числового ряда. Признаки сходимости числовых рядов. Разложение функции в ряд Тейлора.

- 12. Система линейных алгебраических уравнений (СЛАУ). Методы решения СЛАУ: метод Гаусса, метод Крамера. Критерий существования нетривиального решения системы однородных линейных алгебраических уравнений.
- 13. Система линейных дифференциальных уравнений первого порядка. Методы её решения.
- 14. Вязкостный режим течения. Понятие о пограничном слое. Уравнения ламинарного пограничного слоя.
- 15. Двухфазный поток, истинное объемное паросодержание, режимы течения восходящего двухфазного потока.
 - 16. Законы термодинамики. Термодинамические функции.
- 17. Конвективный теплообмен. Теплообмен в ламинарном пограничном слое.
- 18. Кризис теплообмена при кипении жидкости в большом объеме и каналах.
- 19. Кризис теплоотдачи. Запасы до кризиса. Влияние на величину критического теплового потока параметров теплоносителя при течении в трубе.
- 20. Механизмы теплообмена в однофазном и двухфазном потоках. Соотношения для коэффициентов теплоотдачи для различных режимов течения.
 - 21. Перепад давления в двухфазном потоке.
 - 22. Теплообмен при кипении. Кривая кипения.
- 23. Термическое уравнение состояния. Уравнение состояния идеального газа. Уравнение Ван-дер-Ваальса.
 - 24. Уравнение Навье-Стокса. Виды гидравлических сопротивлений.
- 25. Уравнения Рейнольдса осредненного турбулентного движения. Полуэмпирическая теория турбулентности Прандтля. Универсальный профиль скорости для течений вблизи гладких и шероховатых поверхностей. Ламинарный и турбулентный профили скорости в трубе.

7. Учебно-методическое и информационное обеспечение дисциплины

- I. Основная литература:
- 1. Кириллов, П.Н., Богословский, Г.П. Теплообмен в ядерных энергетических установках. М.: Энергоатомиздат, 2000. 548 с. ISBN 5-7046-0843-4.
- 2. Кутателадзе, С.С. Основы теории теплообмена. М.: Атомиздат, 1979. 415 с.
- 3. Кириллин, B.A., Сычев, B.B., Шейндлин, A.E. Техническая Издание 4-е. М.: Энергоатомиздат, 1983. термодинамика. Текст: DOI электронный. отсутствует. URL: chromeextension://efaidnbmnnnibpcajpcglclefindmkaj/http://www.nepplus.ru/images/textbk/kirillin.pdf (дата обращения: 28.09.2022).
- 4. Петухов, Б.С., Генин, Л.Г., Ковалев, С.А. Теплообмен в ядерных энергетических установках. М.: Энергоатомиздат, 1986. 470 с.
- 5. Кутепов, А.М., Стерман, Л.С., Стюшин, Н.Г. Гидродинамика и теплообмен при парообразовании. Издание 3-е. М.: Высшая школа, 1986. 447 с.
- 6. Теория и техника теплофизического эксперимента / Справочник /Под общ. Ред. В.К. Щукина М.: Энергоатомиздат, 1985. 181 с.
- 7. Тепло-и массообмен теплотехнический эксперимент / Справочник / Под общ. Ред. В.А. Григорьева, В.М. Зорина. М.: Энергоатомиздат, 1982. 518 с.
 - II. Дополнительная литература:
- 1. Базаров, И.П. Термодинамика. Издание 2-е. М.: Высшая школа, 1976. 447 с.
- 2. Гавра, Т.Г., Михайлов, П.М., Рис, В.В. Тепловой и гидравлический расчёт теплообменных аппаратов компрессорных установок. Л.: Изд-во ЛПИ, 1982. Текст: электронный. DOI отсутствует. URL: chrome-

- extension://efaidnbmnnnibpcajpcglclefindmkaj/http://thermalinfo.ru/Sets/bibl_files/Gavra_teplovoj_i_gidravlicheskij_raschet_teploobmennykh_apparatov.pdf (
- 3. Жуковский, В.С. Основы теории теплопередачи. Издание 2-е. Л.: Энергия, 1969.-223 с.
- 4. Иванов, А.Е., Иванов, С.А. Механика. Молекулярная физика и термодинамика: учебное пособие, КНОРУС, 2012. 949 с. ISBN 978-5-406-00525-5.
- 5. Иродов И.Е. Задачи по общей физике: Учеб. пособие для вузов. М.: Наука, 1988. - 416 с. – ISBN 5-02-013849-5.
- 6. Ковальчук, М.В. Идеология природоподобных технологий / Михаил Ковальчук; Национальный исследовательский центр «Курчатовский институт». Москва: Физматлит, 2021. ISBN 978-5-9221-1931-3.
- 7. Кузнецов, Ю.Н. Теплообмен в проблеме безопасности ядерных реакторов. М.: Энергоатомиздат, 1989. 296 с. ISBN 5-283-03743-6.
- 8. Лабунцов, Д.А., Ягов В.В. Механика двухфазных сред. М.: Изд-во МЭИ, 2007. 383 с. ISBN 978-5-383-00036-6.
 - 9. Новиков, И.И. Термодинамика. М.: Машиностроение, 1984. 592 с.
 - 10. Роуч, П. Вычислительная гидродинамика. М.: Мир, 1980. 616 с.
- 11. Теоретическая механика. Термодинамика. Теплообмен. / Энциклопедия. Машиностроение. Т. 1-2 / Под общ. Ред. К.К. Колесникова, А.И. Леонтьева. М.: Машиностроение, 1999. Текст: электронный. DOI отсутствует. URL: https://booktech.ru/books/tmm/11716-mashinostroenie-enciklopediya-t-1-2-teoreticheskaya-mehanika-1999-k-s-kolesnikov.html (дата обращения: 29.09.2022).
- 12. Теория тепломассообмена. / Под ред. А.И. Леонтьева. М.: Изд-во МГТУ им. Н.Э. Баумана, 1997. 683 с. ISBN 5-7038-1265-8.
- 13. Чиркин, В.С. Тепло-физические свойства материалов ядерной техники. М.: Атомиздат, 1968. 484 с.

- 14. Шпильрайн, Э.Э., Кессельман, П.М. Основы теории теплофизических свойств веществ. М.: Энергия, 1977. 248 с.
- III. Перечень ресурсов Интернет, необходимых для освоения дисциплины:
- 1. Фонд знаний «Ломоносов»: [сайт]. URL: http://lomonosov-fund.ru/enc/ru/encyclopedia:01270:article
- 2. Словари и энциклопедии на Академике: [сайт]. URL: https://dal.academic.ru/dic.nsf/ruwiki/695372
 - IV. Доступ к электронным библиотекам:
- 1. Онлайн-каталог DOAJ: [сайт]. URL: https://doaj.org/ (дата обращения: 28.06.2022).
- 2. Научная электронная библиотека eLIBRARY.RU: [сайт]. URL: https://elibrary.ru/defaultx.asp (дата обращения: 30.07.2022).
- 3. Сервер документов ЦЕРН: [сайт]. URL: https://cds.cern.ch/ (дата обращения: 30.07.2022).
- 4. Открытый доступ к журналам по физике и астрономии Physics related free-access Journals: [сайт]. URL: https://www.elsevier.com/physical-sciences-and-engineering/physics-and-astronomy/journals/open-access-in-physics-journals (дата обращения: 30.07.2022).
- 5. Большая научная библиотека: [сайт]. URL: http://www.sci-lib.net/ (дата обращения: 12.08.2022).
- 6. Научная электронная библиотека диссертаций и авторефератов: [сайт]. URL: https://www.dissercat.com/ (дата обращения: 12.08.2022).
- 7. Электронная библиотека механико-математического факультета Московского государственного университета: [сайт]. URL: http://lib.mexmat.ru/index.php (дата обращения: 12.08.2022).
- 8. Электронная библиотека Российского фонда фундаментальных исследований: [сайт]. URL: https://www.rfbr.ru/rffi/ru/library (дата обращения: 12.08.2022).

- 9. Вестник РФФИ: [сайт]. URL: https://www.rfbr.ru/rffi/ru/bulletin (дата обращения: 30.08.2022).
- 10. Книги, изданные при поддержке РФФИ: [сайт]. URL: https://www.rfbr.ru/rffi/ru/books (дата обращения: 30.08.2022).
- IV. Доступ к журналам и базам публикаций различных научных издательств:
- 1. Электронный доступ к коллекции из 15 журналов базы данных компании Американского физического общества (APS). База данных APS содержит журналы по ядерной физике, физике высоких энергий, астрофизике, математической физике, механике и др.: [сайт]. URL: https://www.aps.org/ (дата обращения: 12.09.2022).
- 2. Электронный доступ к коллекции из 17 журналов базы данных компании AIP Publishing LLC (AIP). Тематические рубрики изданий включают основные разделы физики и смежных областей знания: [сайт]. URL: https://www.aip.org/ (дата обращения: 12.09.2022).
- 3. Электронный доступ и использование баз данных журналов компании IOP PUBLISHING LIMITED: База данных журнала Nuclear Fusion: [сайт]. URL: https://www.iop.org/ (дата обращения: 12.09.2022).
- 4. Электронный доступ к журналам и книгам издательства Elsevier на платформе ScienceDirect. Коллекция журналов Complete Freedom Collection: [сайт]. URL: http://info.sciencedirect.com/techsupport/journals/freedomcoll.htm (дата обращения: 12.09.2022).
- 5. Электронный доступ к журналам, книгам и базам данных издательства Springer_Nature: [сайт]. URL: https://www.springernature.com/gp (дата обращения: 12.09.2022).
- 6. Электронный доступ к базе данных Cambridge Crystallographic Data Centre. База данных Кембриджского центра структурных данных CSD-Enterprise содержит данные о строении кристаллических органических и элементорганических соединений (800 000 структур, он-лайн и офф-лайн

версии), комплекс программ для работы с ними для биологов, химиков и кристаллографов: [сайт]. — URL: https://www.ccdc.cam.ac.uk/ (дата обращения: 12.09.2022).

V. Электронный доступ к следующим изданиям:

- 1. Web of Science (авторитетная политематическая реферативнобиблиографическая и наукометрическая (библиометрическая) база данных: [сайт]. – URL: https://webofknowledge.com/ (дата обращения: 12.09.2022).
- 2. Scopus (мультидисциплинарная библиографическая и реферативная база данных и инструмент для отслеживания цитируемости статей, опубликованных в научных изданиях): [сайт]. URL: https://www.scopus.com/search/form.uri?display=basic#basic (дата обращения: 12.09.2022).
- 3. Коллекция журналов Wiley (более 1600 изданий) с глубиной архива с 1997 г. по текущий момент: [сайт]. URL: https://www.wiley.com/ (дата обращения: 25.09.2022).
- 4. Science (один из самых авторитетных научных журналов Американской ассоциации содействия развитию науки): [сайт]. URL: https://www.science.org/ (дата обращения: 17.09.2022).
- 5. Institute of Physics (охватывает три направления области физики: образование, исследования и разработки): [сайт]. URL: https://www.iop.org/ (дата обращения: 15.08.2022).
- 6. Электронный доступ к архивам научных журналов: Annual Reviews: [сайт]. URL: https://www.annualreviews.org/ (дата обращения: 12.09.2022).
- 7. Cambridge University Press: [сайт]. URL: https://www.cambridge.org/core (дата обращения: 21.06.2022).
- 8. Nature: [сайт]. URL: https://www.nature.com/ (дата обращения: 13.08.2022).
- 9. Oxford University Press: [сайт]. URL: https://global.oup.com/?cc=ru (дата обращения: 12.09.2022).

- 10. SAGE Publications: [сайт]. URL: https://us.sagepub.com/en-us/nam/home (дата обращения: 03.09.2022).
- 11. Science Magazine: [сайт]. URL: https://www.science.org/ (дата обращения: 14.09.2022).
- 12. Springer Journals Archiv с 1832 1996 гг.: [сайт]. URL: https://link.springer.com/ (дата обращения: 22.08.2022).
- 13. Taylor&Francis: [сайт]. URL: https://taylorandfrancis.com/ (дата обращения: 12.09.2022).
- 14. Wiley: [сайт]. URL: https://www.wiley.com/ (дата обращения: 12.09.2022).

8. Материально-техническое обеспечение дисциплины

- 1. При освоении дисциплины необходимы стандартная учебная аудитория с доской, ноутбук, мультимедийный проектор, экран. Аспирантам должен быть обеспечен доступ к сети Интернет и свободный доступ к библиотеке периодических изданий по предмету (в том числе и к электронным изданиям).
- 2. Лекции проводятся в стандартной аудитории, оснащенной в соответствии с требованиями преподавания теоретических дисциплин.
- 3. На всех аудиторных занятиях используются средства визуализации учебного материала: мультимедийное оборудование (проектор, ноутбук, экран, презентер), презентации лекций.