НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ЦЕНТР «КУРЧАТОВСКИЙ ИНСТИТУТ»

На правах рукописи

Hucoper

Писарев Александр Николаевич

КОЛИЧЕСТВЕННАЯ ОЦЕНКА ВЛИЯНИЯ НЕОПРЕДЕЛЕННОСТЕЙ ЯДЕРНЫХ ДАННЫХ НА ТОЧНОСТЬ ОПРЕДЕЛЕНИЯ ИЗОТОПНОГО СОСТАВА ТОПЛИВА В РАСЧЕТАХ ВЫГОРАНИЯ

Специальность: 2.4.9.

«Ядерные энергетические установки, топливный цикл, радиационная безопасность»

Автореферат диссертации на соискание ученой степени кандидата технических наук

Москва - 2024

Работа выполнена в федеральном государственном бюджетном учреждении «Национальный исследовательский центр «Курчатовский институт» (НИЦ «Курчатовский институт»).

- Научный руководитель: Колесов Валерий Васильевич, кандидат физикоматематических наук, начальник лаборатории физики топливных циклов и трансмутаций Курчатовского комплекса перспективной атомной энергетики НИЦ «Курчатовский институт», г. Москва.
- Ельшин Александр Всеволодович, доктор технических наук, Официальные оппоненты: профессор, главный научный сотрудник отдела нейтроннофизических исследований Научно-исследовательского технологического института имени А.П. Александрова (ФГУП «НИТИ имени А.П. Александрова»), г. Сосновый Бор; Жердев Генналий Михайлович. канлилат физикоматематических наук, главный специалист подразделения управления обеспечения единства измерений Института технического регулирования, обеспечения единства измерений и стандартизации Росатома (ЧУ «Атомстандарт»), г. Москва. Ведущая организация: Акционерное общество «Государственный научный центр Российской Федерации – Физико-энергетический институт имени А.И. Лейпунского», г. Обнинск.

Защита диссертации состоится 11 февраля 2025 г., начало в 14:00, на заседании диссертационного совета 02.1.003.04 на базе НИЦ «Курчатовский институт» по адресу: 123182, г. Москва, пл. Академика Курчатова, д.1.

С диссертацией можно ознакомиться в библиотеке НИЦ «Курчатовский институт» и на сайте <u>www.nrcki.ru</u>.

Автореферат разослан « _ » ____ 2024 г

Ученый секретарь

диссертационного совета 02.1.003.04 кандидат физико-математических наук

ADEX

Д.А. Шкаровский

© Национальный исследовательский центр «Курчатовский институт», 2024

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность работы

Повышение точности расчета изотопного состава топлива при выгорании необходимо для обеспечения мер безопасности, которые напрямую связаны с такими факторами, как образование газообразных продуктов деления, запаздывающих нейтронов, критичность и остаточное тепловыделение. Также это способствует более точному прогнозированию глубины выгорания, особенно в случаях, когда речь идет о больших глубинах. Ужесточение требований к эксплуатационным характеристикам требует более точного прогнозирования параметров как проектируемых, так и действующих реакторных установок.

После облучения топлива в реакторе его изотопный состав обычно определяют с помощью анализа, а не путем измерения. Регулярное измерение содержания изотопов в выгружаемом топливе с помощью химических анализов не является целесообразным из-за проблем, связанных с радиационными эффектами облучения людей, безопасностью и стоимостью. Для десятков тысяч сборок проведение систематических измерений невозможно, поэтому моделирование выгорания топлива приобретает решающее значение. Нейтронно-физические расчеты, использующие различные библиотеки ядерно-физических данных, позволяют получить более полные данные для значимых нуклидов, включая диапазоны концентраций.

В современных файлах данных доступно большое количество ядерных данных, однако их точность и достоверность остаются под вопросом. Анализ отечественных и зарубежных библиотек показывает, что необходимо значительно улучшить качество оцененных ядерных данных, особенно для тех нуклидов, количество которых значительно увеличивается по сравнению с существующими реакторами при более высоком выгорании топлива и внедрении технологий замкнутого топливного цикла.

Основной задачей всех библиотек является реалистичная оценка погрешностей в рекомендуемых ядерных данных. От точности этой оценки зависят

корректность расчетных реакторных функционалов и, соответственно, уровень безопасности, закладываемый в проекты. Если погрешности будут занижены, это может привести к снижению безопасности, а если завышены – к экономическим потерям.

Перенос ошибок в ядерных данных играет все более важную роль при моделировании нейтронно-физических процессов в ядерных реакторах. Учет неопределенности ядерных данных позволяет определить границы достоверности для макроскопических параметров, которые используются при проектировании и обеспечении безопасности ядерных систем.

Исследования области ядерных В данных приносят значительную экономическую выгоду. Затраты на эти исследования составляют лишь незначительную часть от общей стоимости реализации ядерных технологий. Однако использование достоверных ядерных обоснованной данных с погрешностью позволяет существенно сократить дорогостоящие запасы в проектах и с высокой точностью прогнозировать ядерную безопасность и экологическую приемлемость создаваемых объектов. Чем более точными являются используемые константы, тем более надежными становятся прогнозы и тем ниже становится общая стоимость реализации проектов.

Прецизионные расчеты выгорания особенно актуальны при анализе ядерной и радиационной безопасности объектов с ОЯТ, а также при использовании новых топливных композиций в реакторах нового поколения. Неотъемлемой частью исследований, направленных на обоснование ядерной безопасности реакторных установок, является оценка погрешностей как исходных данных, так и конечных результатов. Некорректный учет погрешностей в исходных данных может привести к серьезным проблемам, таким как недооценка эффективности рабочих органов системы управления и защиты, неправильное определение запасов реактивности в различных состояниях реактора и другие негативные последствия. Сложность получения экспериментальных данных математических методов для решения задач изотопной кинетики. Эти методы должны гарантировать

допустимую погрешность результатов и разработку специализированных бенчмарк-расчетов.

Количественная оценка неопределенностей ядерных концентраций в расчетах выгорания позволит более точно прогнозировать изотопный состав топлива, что важно для оптимизационных задач трансмутации, рециркуляции и удаления отходов.

Показатели трансмутации существенно зависят от ядерных данных, поэтому важно количественно оценить результирующие неопределенности в интегральных параметрах быстрых реакторных систем. Это связано с тем, что топливо таких реакторов может содержать значительное количество минорных актинидов, таких как америций и кюрий, сечения (скорости реакций) которых плохо известны.

Знание изотопного состава топлива во время работы реактора необходимо для оценки долговременной радиотоксичности, остаточного тепловыделения отработавшего топлива, изменений запаса реактивности, а также для контроля роста давления газа и концентрации летучих продуктов деления, которые формируют источник выброса в аварийных ситуациях. При транспортировке и хранении отработавшего топлива важное значение имеют как точный расчет полного остаточного тепловыделения, так и неопределенность в $k_{3\phi\phi}$. Решение задач выгорания топлива необходимо для оценки накопления различных изотопов, образующихся в реакторных установках, таких как изотопы плутония и медицинские радиоизотопы, например, молибден-99. При этом в большинстве случаев достаточно сложно экспериментально определить их концентрации в отработавшем топливе.

Таким образом, в настоящее время большое значение имеют численные методы решения задач выгорания. С другой стороны, неопределенности в оцененных скоростях реакций, потоке нейтронов и других величинах могут привести к значительным искажениям полученных результатов, поэтому важно уметь определить влияние таких неопределенностей на ядерные концентрации нуклидов в процессе выгорания топлива.

Цель работы – разработка и обоснование методики для оценки погрешностей ядерных концентраций актинидов в задачах изотопной кинетики в зависимости от погрешностей входных данных, таких как одногрупповые нейтронные сечения и плотность потока нейтронов для реакторных установок различного типа.

Для достижения поставленной цели были решены следующие научнотехнические задачи:

– проведена верификация программного комплекса VisualBurnOut применительно к моделированию изотопной кинетики на основе бенчмарк-теста и модельных задач (аналитическое решение, статистический подход);

– проведена адаптация программного комплекса VisualBurnOut для создания методики оценки погрешностей констант, необходимых для достижения гарантированных погрешностей в оценках ядерных концентраций актинидов в процессе кампании;

 – создание программы для организации комплексных нейтронно-физических расчетов и расчета выгорания топлива;

 выполнены оценки константной составляющей погрешности в расчетах ядерных концентраций актинидов для действующих и перспективных моделей ТВС водо-водяных реакторов;

– определены требования к точности ядерных данных, что позволяет получить гарантированные оценки погрешностей ядерных концентраций актинидов на конец кампании действующих и перспективных моделей ТВС водоводяных реакторов.

Положения работы, выносимые на защиту

1. Программный комплекс ABC для организации комплексных нейтронно-физических расчетов и расчетов выгорания ядерного топлива.

2. Методика оценки погрешностей ядерных концентраций актинидов в задачах изотопной кинетики в зависимости от погрешностей входных данных: одногрупповые нейтронные сечения и плотность потока нейтронов.

3. Оценка погрешностей ядерных концентраций актинидов при расчетах кампании для моделей ТВС реакторов ВВЭР-СКД и ВВЭР-1200.

4. Оценка требований к точности ядерных данных для получения гарантированных оценок погрешностей в ядерных концентрациях актинидов в задачах изотопной кинетики для моделей ТВС реакторов ВВЭР-СКД и ВВЭР-1200.

Научная новизна работы

– Разработана методика на основе программного комплекса VisualBurnOut для моделирования задач выгорания и оценки погрешностей ядерных концентраций нуклидов для различных типов реакторов.

– Впервые для моделей ТВС реакторов ВВЭР-СКД и ВВЭР-1200 были получены оценки погрешностей ядерных концентраций актинидов на конец кампании.

– Впервые для моделей ТВС реакторов ВВЭР-СКД и ВВЭР-1200 были получены оценки погрешностей одногрупповых сечений ядерных реакций, позволяющие получить гарантированные оценки наработки актинидов на конец кампании.

Достоверность полученных результатов

Достоверность результатов, полученных с помощью программного комплекса VisualBurnOut, подтверждается их хорошей согласованностью с результатами, рассчитанными по другим программам, моделирующим процесс выгорания топлива: SERPENT, KENO, MONTEBURNS, а также сравнением рассчитываемых погрешностей с результатами, полученными с использованием статистического подхода и на модельных задачах, допускающих аналитическое решение. Кроме того, результаты расчета погрешностей, полученные с помощью VisualBurnOut, были сопоставлены с данными, полученными статистическим методом и на модельных задачах, которые допускают аналитическое решение.

Практическая значимость работы

1. Методика может быть использована для оценки погрешностей в ядерных концентрациях различных нуклидов при разработке перспективных реакторных установок.

2. Методика может быть использована для оценки потребностей в уточнении ядерных данных, необходимых для проведения нейтронно-физических расчетов.

Апробация работы

Материалы, представленные в диссертации, были доложены на 6 международных конференциях и межведомственных мероприятиях:

1. XIII-ая международная научно-практическая конференция «БУДУЩЕЕ АТОМНОЙ ЭНЕРГЕТИКИ», Обнинск, 2017;

2. XV-ая международная научно-практическая конференция «БУДУЩЕЕ АТОМНОЙ ЭНЕРГЕТИКИ», Обнинск, 2019;

3. XVI-ая Курчатовская междисциплинарная молодежная научная школа, Москва, 2019;

4. XVI-ая международная научно-практическая конференция «БУДУЩЕЕ АТОМНОЙ ЭНЕРГЕТИКИ», Обнинск, 2020;

5. Международная молодежная школа-конференция по ядерной физике и технологиям (International School on Nuclear Physics and Engineering NPhE-2020);

6. 31-ая Всероссийская научно-техническая конференция «Нейтроннофизические проблемы атомной энергетики» («Нейтроника-2022»), Обнинск, 2022.

Публикации

По теме диссертации опубликованы 5 статей в рецензируемых научных изданиях, 4 из которых статьи в журналах, рекомендованных ВАК. Список публикаций приведен в конце автореферата.

Личный вклад автора

Диссертационная работа содержит расчетные и прикладные результаты, полученные автором в период с 2018 по 2024 год. Автор лично выполнил поиск в открытых публикациях, анализ и обобщение информации по теме исследования. Основная часть научных результатов, связанных с положениями, выносимыми на защиту, получена автором лично. В случае совместных работ, относящихся к этим положениям, автору принадлежала ведущая роль. В работах прикладного характера, связанных с использованием разработанных методов, автор принимал участие в постановке задачи, расчетах и анализе результатов. Методика оценки

погрешностей ядерных концентраций нуклидов от погрешностей одногрупповых сечений и плотности потока нейтронов в задачах изотопной кинетики для различных реакторных установок разработана лично автором. Основные результаты, полученные автором, заключаются в следующем.

• Разработана программа-связка ABC на языке программирования Python, предназначенная для организации нейтронно-физических расчетов и расчета выгорания ядерного топлива с учетом возможных погрешностей исходных данных.

• Проведены верификационные расчеты и обоснованы методики, используемые в программном комплексе VisualBurnOut для оценки константной составляющей погрешности НФХ в расчетах выгорания.

• Получены оценки константной составляющей погрешности результатов расчета выгорания для простой модели ячейки реактора PWR.

• Получены оценки константной составляющей погрешности результатов расчета выгорания для моделей ТВС реакторов ВВЭР-СКД и ВВЭР-1200.

Структура и объем диссертации

Диссертация состоит из введения, четырех глав, заключения, списка литературы из 110 наименований и двух приложений, содержит 128 страниц, 28 таблиц и 16 рисунков.

КРАТКОЕ СОДЕРЖАНИЕ РАБОТЫ

Во введении обоснована актуальность работы, сформирована ее цель и поставлены задачи для достижения цели, приведена информация о научной новизне, описана практическая значимость и достоверность полученных результатов, изложены основные положения, выносимые на защиту, приведена информация об основных публикациях по теме работы.

В первой главе рассмотрены имеющиеся программные комплексы для решения задачи выгорания топлива, приведен литературный обзор работ по оценке влияния погрешностей ядерных данных на расчетные параметры реакторной установки и методов их получения. Как оказалось, в России выполнено довольно мало работ, посвященных исследуемой тематике.

Анализ литературных источников позволяет сделать следующие выводы:

1) Большинство программных кодов для расчета выгорания не имеют возможности оценки погрешностей расчетных величин.

2) Большинство исследований сосредоточено на изучении влияния неопределенностей в ядерных данных на стандартные параметры, такие как эффективный коэффициент размножения, эффекты реактивности, плотность потока нейтронов и другие.

Описаны два различных подхода к оценке константной погрешности. Первый метод основывается на использовании коэффициентов чувствительности расчетных характеристик к исходным данным. Второй метод предполагает статистическое моделирование коррелированных наборов исходных расчетных данных с последующей статистической обработкой полученных результатов. Показаны их преимущества и недостатки.

Во второй главе описана методика, которая позволяет оценить точность расчета ядерных концентраций актинидов в задачах изотопной кинетики в зависимости от погрешностей исходных данных. Также в этой главе рассказывается о программных модулях, на которых основана данная методика.

На рисунке 1 изображена схема методики оценки погрешности ядерных концентраций нуклидов. Она включает в себя следующие основные этапы:

1. Получение непрерывно зависящих от энергии сечений и связанных с ними величин на основе оцененных ядерных данных с помощью программного комплекса NJOY;

2. Нейтронно-физический расчет по программе MCNP;

3. Расчет выгорания ядерного топлива по программе VisualBurnOut с учетом погрешностей входных данных;

4. Повторение пункта 2 и 3 необходимое количество раз с помощью программы ABC;

5. Решение задачи минимизации с помощью программы SNOPT.

Рисунок 1 – Определение константной погрешности расчета ядерных концентраций нуклидов

Для проведения комплексных нейтронно-физических расчетов и расчета выгорания ядерного топлива была разработана программа-связка под названием «Объединенный комплекс автоматизированных расчетов выгорания топлива (ABC)». Эта программа представляет собой единый интерфейс, который объединяет две другие программы – MCNP и VisualBurnOut. Основная задача ABC заключается в автоматическом преобразовании выходных данных из MCNP в задания для расчетов в VisualBurnOut и сохранении полученных результатов.

Для определения погрешностей в ядерных концентрациях нуклидов в VisualBurnOut peanusoBah подход, суть которого заключается в том, что проводятся два расчета: один расчет со входным параметром плюс среднеквадратичное отклонение, второй со входным параметром минус среднеквадратичное отклонение. Получается два значения ядерных концентраций для всех нуклидов. Разность между ними дает нам величину, в точности совпадающую со среднеквадратичным отклонением, полученным в статистическом подходе.

Для верификации расчетов погрешностей были проведены сравнительные расчеты ядерных концентраций и их среднеквадратичных отклонений в процессе выгорания для модельной задачи, обусловленных среднеквадратичным отклонением в плотности потока нейтронов (среднеквадратичное отклонение, равное 3%) и в сечении реакции захвата ²⁴⁰Pu, с использованием аналитических формул и метода вариации исходных данных программы VisualBurnOut.

Наблюдается практически полное совпадение результатов, полученных с использованием обоих методов, как в расчетах ядерных концентраций, так и в расчетах их среднеквадратичных отклонений.

В третьей главе приводятся результаты оценки погрешностей ядерных концентраций нуклидов с использованием программного комплекса VisualBurnOut для ячейки реактора PWR, используемой в качестве международного бенчмарка. Осуществлена верификация программного комплекса VisualBurnOut. Результаты расчета выгорания хорошо согласуются с другими работами.

Проведено исследование влияния состава свежего топлива и спектра нейтронов на погрешности в ядерных концентрациях нуклидов, которые обусловлены погрешностью в плотности потока нейтронов, равной 3%.

В таблице 1 представлены среднеквадратичные отклонения в ядерных концентрациях для трех глубин выгорания. Погрешность для ²³⁸U очень мала

(0.01%) и постоянна при выгорании, поскольку его концентрация существенно не изменяется по сравнению с исходной концентрацией. Для минорных актинидов погрешности, в основном, составляют менее 5%, как и ожидалось, эти погрешности для некоторых нуклидов значительно выше, чем для урана и плутония. Для наиболее важных актинидов погрешности находятся в диапазоне от 1 до 3%. Практически все значимые изотопы кюрия имеют погрешности в ядерных концентрациях в диапазоне 0.50-1.00%.

Наблюдается тенденция превышения среднеквадратичных отклонений ядерных концентраций актинидов для UO₂-топлива по сравнению с MOXтопливом. Исключение составляют концентрации ²³³U, ²³⁹Pu, ²⁴²Am. Из этих данных видно, что рассмотренное изменение типа топлива приводит к изменению погрешностей ядерных концентраций нуклидов.

В большинстве случаев с увеличением выгорания разница между погрешностями в ядерных концентрациях для UO₂- и MOX-топлива уменьшается.

Ужесточение спектра нейтронов для МОХ-топлива не влияет на характер зависимости среднеквадратичных отклонений ядерных концентраций от глубины выгорания. Разница заключается лишь в численном значении погрешности на конец кампании, причем в ту или иную сторону. Для большинства актинидов наблюдается тенденция к уменьшению погрешностей при переходе от теплового к быстрому нейтронному спектру. Для изотопов урана, нептуния и плутония наблюдается обратный эффект, за исключением ²³²U, ²³⁴U, ²³⁶Pu, ²³⁹Pu и ²⁴²Pu.

Выполнена проверка влияния количества расчетных точек выгорания на погрешности ядерных концентраций нуклидов. Среднеквадратичные отклонения в ядерных концентрациях нуклидов представлены в таблице 2. Обнаружено, что среднеквадратичное отклонение в ядерных концентрациях нуклидов в рассматриваемом диапазоне исследования влияния количества шагов убывает по закону 2^{1/2}. Это справедливо для относительно небольшого количества шагов. При увеличении числа шагов среднеквадратичные отклонения ядерных концентраций выходят на асимптотику.

Lin differ formation in the concerned									
	Среднеквадратичные отклонения в ядерных концентрациях, %								
Нуклид	PWR, M	IOX (MB	г•сут/кг)	PWR, UO ₂ (MBτ·cyt/ κ Γ)			PWR, MOX_fast (MBT·сут/кг)		
	16	32	48	16	32	48	16	32	48
²³² U	0,73	0,52	0,38	0,84	0,59	0,45	0,64	0,41	0,27
²³³ U	0,60	0,29	0,15	0,57	0,27	0,13	0,58	0,30	0,16
²³⁴ U	0,18	0,20	0,20	0,18	0,27	0,32	0,10	0,10	0,10
²³⁵ U	0,21	0,35	0,49	0,36	0,50	0,64	0,27	0,41	0,55
²³⁶ U	0,73	0,50	0,36	0,66	0,48	0,38	0,74	0,52	0,40
²³⁷ U	2,87	2,85	2,84	2,98	2,90	2,86	2,85	2,85	2,85
²³⁸ U	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,01
²³⁶ Np	0,76	0,37	0,19	0,78	0,39	0,21	0,77	0,41	0,26
²³⁷ Np	0,50	0,31	0,20	0,59	0,36	0,22	0,50	0,31	0,22
²³⁸ Np	3,13	3,03	2,98	3,18	3,04	2,98	3,12	3,03	3,01
²³⁹ Np	2,99	2,99	2,99	2,99	2,99	2,99	2,99	2,99	2,99
²³⁶ Pu	0,75	0,63	0,60	1,30	0,86	0,67	0,74	0,59	0,54
²³⁸ Pu	0,16	0,20	0,14	0,88	0,52	0,37	0,22	0,26	0,19
²³⁹ Pu	0,29	0,33	0,28	0,29	0,10	0,10	0,04	0,04	0,04
²⁴⁰ Pu	0,33	0,19	0,12	0,55	0,27	0,13	0,41	0,31	0,28
²⁴¹ Pu	0,58	0,26	0,11	0,81	0,34	0,17	0,57	0,35	0,23
²⁴² Pu	0,85	0,56	0,42	1,19	0,67	0,48	0,69	0,53	0,39
²⁴¹ Am	0,29	0,37	0,50	0,40	0,42	0,54	0,24	0,24	0,24
^{242m} Am	0,55	0,20	0,22	0,62	0,25	0,28	0,59	0,29	0,18
²⁴² Am	2,88	2,84	2,82	2,86	2,79	2,76	2,92	2,91	2,92
²⁴³ Am	1,00	0,64	0,46	1,43	0,78	0,52	0,82	0,58	0,44
²⁴⁴ Am	3,63	3,32	3,18	4,05	3,44	3,24	3,46	3,26	3,16
²⁴² Cm	1,15	0,91	0,81	1,30	0,95	0,83	1,11	0,90	0,82
²⁴³ Cm	1,29	0,76	0,50	1,58	0,86	0,56	1,21	0,74	0,54
²⁴⁴ Cm	1,20	0,82	0,63	1,68	0,98	0,71	1,03	0,71	0,57
²⁴⁵ Cm	1,34	0,85	0,58	1,89	1,01	0,66	1,14	0,71	0,54
²⁴⁶ Cm	1,63	1,11	0,87	2,20	1,29	0,96	1,43	0,94	0,75
²⁴⁷ Cm	1,81	1,19	0,91	2,45	1,40	1,03	1,61	1,00	0,77
²⁴⁸ Cm	2,03	1,34	1,05	2,71	1,57	1,17	1,82	1,12	0,88
²⁴⁹ Cm	4,71	3,98	3,68	5,44	4,22	3,80	4,46	3,74	3,50
²⁵⁰ Cm	3,85	2,68	2,19	4,83	3,08	2,42	3,51	2,31	1,83
²⁴⁹ Bk	2,26	1,43	1,08	2,97	1,65	1,18	2,08	1,29	1,02
²⁵⁰ Bk	4,99	4,16	3,84	5,74	4,40	3,96	4,77	3,98	3,71
²⁴⁹ Cf	1,09	0,56	0,50	1,57	0,68	0,56	1,00	0,47	0,36
²⁵⁰ Cf	2,37	1,43	1,05	3,08	1,64	1,13	2,18	1,27	0,95
²⁵¹ Cf	2,50	1,43	1,00	3,21	1,64	1,08	2,30	1,24	0,87
²⁵² Cf	2.81	1.74	1.36	3.51	1.95	1.44	2.58	1.50	1.13

Таблица 1 – Сравнение среднеквадратичных отклонений ядерных концентраций для двух видов топлива и трех спектров

Таблица 2 – Среднеквадратичные отклонения ядерных концентраций нуклидов в зависимости от количества расчетных точек выгорания при 3%-ой погрешности плотности потока

	Количество расчетных точек выгорания							
Нуклид	176	88	44	22	11			
	Среднеквадратичные отклонения ядерных концентрац							
²³² U	0,30	0,32	0,38	0,52	0,82			
²³³ U	0,12	0,13	0,15	0,20	0,35			
²³⁴ U	0,16	0,17	0,20	0,30	0,35			
²³⁵ U	0,39	0,41	0,49	0,66	1,05			
²³⁶ U	0,29	0,30	0,36	0,49	0,79			
²³⁷ U	2,25	2,37	2,84	4,12	5,55			
²³⁸ U	0,01	0,01	0,01	0,01	0,02			
²³⁶ Np	0,15	0,16	0,19	0,29	0,33			
²³⁷ Np	0,16	0,17	0,20	0,30	0,32			
²³⁸ Np	2,37	2,48	2,98	4,35	5,71			
²³⁹ Np	2,37	2,49	2,99	4,08	6,15			
²³⁶ Pu	0,48	0,50	0,60	0,89	1,06			
²³⁸ Pu	0,11	0,12	0,14	0,23	0,26			
²³⁹ Pu	0,22	0,23	0,28	0,44	0,52			
²⁴⁰ Pu	0,10	0,10	0,12	0,16	0,27			
²⁴¹ Pu	0,09	0,09	0,11	0,15	0,26			
²⁴² Pu	0,33	0,35	0,42	0,57	0,87			
²⁴¹ Am	0,40	0,42	0,50	0,77	0,95			
^{242m} Am	0,17	0,18	0,22	0,35	0,41			
²⁴² Am	2,24	2,35	2,82	3,76	5,68			
²⁴³ Am	0,37	0,38	0,46	0,69	0,90			
²⁴⁴ Am 2,52		2,65	3,18	4,61	6,31			
²⁴² Cm	0,64	0,68	0,81	1,19	1,58			
²⁴³ Cm	0,40	0,42	0,50	0,70	1,01			
²⁴⁴ Cm	0,50	0,53	0,63	0,85	1,28			
²⁴⁵ Cm	0,46	0,48	0,58	0,84	1,13			
²⁴⁶ Cm	0,69	0,73	0,87	1,25	1,71			
²⁴⁷ Cm	0,72	0,76	0,91	1,22	1,90			
²⁴⁸ Cm	0,83	0,88	1,05	1,41	2,22			
²⁴⁹ Cm	2,92	3,07	3,68	5,29	7,22			
²⁵⁰ Cm	1,74	1,83	2,19	3,22	4,19			
²⁴⁹ Bk	0,86	0,90	1,08	1,26	2,30			
²⁵⁰ Bk	3,05	3,20	3,84	5,32	7,78			
²⁴⁹ Cf	0,40	0,42	0,50	0,69	1,03			
²⁵⁰ Cf	0,83	0,88	1,05	1,45	2,15			
²⁵¹ Cf	0,79	0,83	1,00	1,47	1,92			
²⁵² Cf	1.08	1,13	1,36	1,89	2,79			

Для оценки погрешностей в ядерных концентрациях нуклидов, обусловленных неопределенностью нейтронных констант, необходимо было провести сравнение с расчетами по другим программам и провести анализ погрешностей за счет неопределенностей в константах с использованием разработанной методики.

В таблице 3 представлено сравнение погрешностей для некоторых актинидов с данными работ для той же ячейки PWR, в которых использовались разные методы оценки константной компоненты погрешностей концентраций. Существуют различия между расчетами: глубина выгорания, ковариационные матрицы сечений. Результаты настоящей работы и работы в большинстве случаев согласуются с точностью до 2 раз, за исключением ²³⁹Np, ²³⁵U, ²³⁷U, ²⁴³Am и ²⁴⁴Cm в MOX-топливе и ²³⁴U, ²³⁷U для UO₂-топлива. Для ²³⁵U, поскольку этот изотоп присутствует в начале цикла, разница в погрешностях в конце цикла должна происходить либо из-за ковариаций ядерных данных (выбор библиотеки оцененных ядерных данных), различий в выгорании, либо из-за различий методов оценки константной компоненты погрешностей концентраций. Также по результатах могут быть не только между различными библиотеками, но и между разными версиями одной библиотеки, что объясняется накоплением новых экспериментальных данных и уточнением имеющихся оцененных ядерных данных.

Проведены расчеты коэффициентов чувствительности ядерных концентраций к различным сечениям. Получены одногрупповые относительные погрешности сечений реакций, обусловленные неопределенностями констант из библиотеки JEFF-3.3 для всех актинидов, начиная с урана, с учетом ковариационных матриц для реального спектра при выгорании UO₂- и MOX-топлива в ячейки PWR.

Для модели ячейки PWR нет серьезных краткосрочных потребностей с точки зрения уменьшения неопределенностей ядерных данных (микроскопических сечений), так как погрешности в ядерных концентрациях наиболее значимых актинидов не превышают 5%.

	Среднеквадратичные отклонения ядерных концентраций, %								
Нуклид	Настоящая работа (48 МВт·сут/кг)		TRITON/ORIGEN 48 MBt·cyt/кг		TMC	GPT	SCALE		
	UO ₂	MOX	UO ₂	MOX	UO ₂ , 50 МВт·сут/кг	UO ₂ , 100 МВт·сут/кг	UO ₂ , 60 МВт·сут/кг		
²³⁴ U	1,52	1,24	0,2	1,6	1,5	-	3,1		
²³⁵ U	0,53	0,29	0,62	1,37	3,2	1,3	0,6		
²³⁶ U	0,89	0,48	1,05	1,04	2,7	-	0,4		
²³⁷ U	0,83	0,45	2,07	1,93	3,1	-	-		
²³⁸ U	0,01	0,01	0,01	0,09	0,07	0,1	0,1		
²³⁷ Np	0,98	0,44	1,61	0,79	5,2	5,7	0,8		
²³⁹ Np	2,19	2,82	3,88	24,98	1,5	_	-		
²³⁸ Pu	1,36	1,02	1,75	1,31	6,7	5,6	0,9		
²³⁹ Pu	0,75	1,08	1,07	1,38	2,5	1,8	1,3		
²⁴⁰ Pu	2,14	1,62	2,49	2,36	3,2	6,0	1,9		
²⁴¹ Pu	2,08	1,75	2,07	1,93	2,4	2,7	1,5		
242 Pu	3,22	2,84	3,90	2,59	4,7	3,8	1,4		
²⁴¹ Am	2,16	2,25	2,06	1,84	2,1	5,9	1,8		
^{242m} Am	2,09	1,89	2,12	1,21	2,3	6,3	-		
²⁴³ Am	3,87	3,16	3,89	24,98	6,4	9,2	1,9		
²⁴² Cm	2,55	2,01	2,12	1,21	3,3	3,1	-		
²⁴⁴ Cm	2,98	2,57	4,34	17,64	9,1	11,9	2,1		

Таблица 3 – Оценки среднеквадратичных отклонений концентраций для некоторых актинидов в UO₂- и MOX-топливе, полученные в различных работах

В четвертой главе даны оценки погрешностей расчетов реальных конструкций ТВС реакторов ВВЭР-СКД и ВВЭР-1200.

Среднеквадратичные отклонения одногрупповых сечений рассчитывались модулем ERRORR программного комплекса NJOY с использованием файлов 32 и 33 библиотеки оцененных ядерных данных JEFF-3.3 для всех актинидов, начиная с урана, с учетом ковариационных матриц для реального спектра топливных зон и зон воспроизводства. Одногрупповые относительные погрешности сечений реакций для нуклидов ^{236,237}U, ²³⁸Np, ^{237,242,244}Pu, ^{241,242,242m}Am были получены из библиотеки JENDL-5 ввиду отсутствия файла 33 в библиотеке JEFF-3.3. Ковариационные матрицы погрешностей получены для реакций (*n*, γ), (*n*, *f*), (*n*, 2*n*), (*n*, 3*n*).

В таблице 4 приводятся полученные значения среднеквадратичных отклонений ядерных концентраций актинидов для топливных зон и зон воспроизводства на конец кампании для ТВС реактора ВВЭР-СКД, а в таблице 5 для топливной зоны с UO₂ и UO₂+Gd₂O₃ топливом для ТВС реактора ВВЭР-1200.

	Зона							
Нуклид	НТЗВ	Топл.1	Топл.2	Топл.3	Топл.4	Топл.5	Топл.6	BT3B
²³² U	0,43	1,47	1,50	1,52	1,53	1,51	1,48	0,31
²³³ U	0,84	4,91	4,95	5,00	5,02	4,96	4,90	0,81
²³⁴ U	1,80	1,51	1,23	1,52	1,53	1,26	0,90	1,35
²³⁵ U	0.24	0.27	0.28	0.31	0.31	0.28	0.22	0.13
²³⁶ U	1.65	1.44	1.41	1.50	1.51	1.41	1.30	1.50
²³⁷ U	7.84	6.58	6.54	6.56	6.56	6.54	6.54	6.93
²³⁸ U	0.02	0.04	0.06	0.08	0.08	0.06	0.03	0.01
²³⁵ Np	7.72	7.29	7.26	7.36	7.37	7.28	7.16	7.71
²³⁶ Np	3.23	2.90	2.90	2.94	2.95	2.90	2.86	3.02
²³⁷ Np	1.80	1.53	1.53	1.68	1.69	1.55	1.35	1.46
²³⁸ Np	19.88	19.92	19.92	19.87	19.86	19.92	19.99	19.97
²³⁹ Np	8.90	8.89	8.89	8.89	8.89	8.89	8.90	8.90
²³⁶ Pu	8.16	5.63	5.57	5.74	5.76	5.59	5.51	8.39
²³⁷ Pu	2.05	10.45	10.54	10.36	10.34	10.54	10.64	1.23
²³⁸ Pu	4.18	1.38	1.41	1.73	1.75	1,44	1.01	4.33
²³⁹ Pu	1.75	0.54	0.63	0.73	0.74	0.64	0.46	1.71
²⁴⁰ Pu	2.33	0.64	0.60	0.71	0.72	0.62	0.45	1.87
²⁴¹ Pu	4,56	2,35	2,32	2,64	2,65	2,36	1,82	4,58
²⁴² Pu	10,56	1,50	1,36	1,67	1,69	1,39	0,99	10,62
²⁴³ Pu	37.64	36.63	36.65	36.63	36.63	36.65	36.68	37.91
²⁴⁴ Pu	11.11	7.66	7.65	7.67	7.67	7.65	7.65	11.63
²⁴¹ Am	3.19	2.16	2.10	2.50	2.55	2.15	1.56	2.32
²⁴² Am	11.98	9,19	9,18	9,27	9,29	9,19	9,05	11.85
^{242m} Am	34,79	35,13	35,14	35,06	35,04	35,12	35,25	35,08
²⁴³ Am	12.35	8.03	7.94	8.06	8.08	7.93	7.83	12.30
²⁴⁴ Am	35.20	34.43	34.47	34.40	34.40	34.46	34.55	35.54
²⁴² Cm	12,63	11.01	11.03	11.02	11,02	11.03	11.01	13.03
²⁴³ Cm	7,17	5,65	5,62	5,66	5,66	5,62	5,57	7,28
²⁴⁴ Cm	11,74	8,45	8,48	8,45	8,45	8,48	8,48	12,21
²⁴⁵ Cm	7,19	5,22	5,25	5,26	5,26	5,25	5,22	7,44
²⁴⁶ Cm	6,60	5,23	5,24	5,20	5,20	5,24	5,28	6,86
²⁴⁷ Cm	6,46	5,28	5,29	5,28	5,28	5,29	5,28	6,60
²⁴⁸ Cm	7,37	6,30	6,29	6,24	6,23	6,29	6,34	7,59
²⁴⁹ Cm	15,30	14,83	14,84	14,80	14,80	14,84	14,88	15,45
²⁵⁰ Cm	10,25	8,90	8,81	8,73	8,72	8,80	8,88	10,39
²⁴⁹ Bk	7,83	6,64	6,60	6,58	6,58	6,60	6,61	7,81
²⁵⁰ Bk	34,40	34,59	34,64	34,55	34,53	34,63	34,73	34,72
²⁴⁹ Cf	3,67	2,78	2,78	2,77	2,77	2,78	2,77	3,65
²⁵⁰ Cf	18,79	14,59	14,31	14,23	14,22	14,30	14,42	17,79
²⁵¹ Cf	21,33	18,64	18,62	18,51	18,50	18,61	18,64	21,42
²⁵² Cf	9,89	8,46	8,51	8,39	8,36	8,50	8,54	10,21
²⁵³ Cf	7,65	6,52	6,56	6,46	6,45	6,55	6,56	7,88
²⁵⁴ Cf	25,03	24,33	24,43	24,22	24,21	24,41	24,52	25,60
²⁵³ Es	5,37	4,40	4,42	4,36	4,33	4,41	4,40	5,45
²⁵⁴ Es	20,40	19,70	19,84	19,75	19,72	19,84	19,76	20,93

Таблица 4 – Среднеквадратичные отклонения ядерных концентраций актинидов для топливных зон и зон воспроизводства на конец кампании

Таблица 5 – Среднеквадратичные отклонения ядерных концентраций актинидов для топливных зон на конец кампании

Нуклид	Твэл/UO2	Твэг/UO ₂ +Gd ₂ O ₃			
²³² U	1,06	1,03			
²³³ U	1,22	1,21			
²³⁴ U	3,42	3,46			
²³⁵ U	0,54	0,48			
²³⁶ U	1.55	1,51			
²³⁷ U	26,70	25,50			
²³⁸ U	0.01	0.01			
²³⁵ Np	8,74	8,81			
²³⁶ Np	6,13	6,05			
²³⁷ Np	4,65	4.52			
²³⁸ Np	20,05	20,03			
²³⁹ Np	8,90	8,90			
²³⁶ Pu	7.01	$ \begin{array}{r} 7,36 \\ 7,36 \\ 14,66 \\ 4,39 \\ 2,69 \\ 4,38 \\ 6,64 \\ 8,51 \\ \end{array} $			
²³⁷ Pu	15.38				
²³⁸ Pu	4,46				
²³⁹ Pu	2,70				
²⁴⁰ Pu	4,44				
²⁴¹ Pu	6,69				
²⁴² Pu	8,34				
²⁴³ Pu	37,01	37,05			
²⁴⁴ Pu	8,37	8,66			
²⁴¹ Am	10,74	10,59			
²⁴² Am	25,81	25,60			
^{242m} Am	33,07	33,08			
²⁴³ Am	10,99	11,11			
²⁴⁴ Am	40,43	40,49			
²⁴² Cm	9,92	10,05 5,85			
²⁴³ Cm	5,77				
²⁴⁴ Cm	10,38	10,74			
²⁴⁵ Cm	7,21	7,34			
²⁴⁶ Cm	4,93	5,15			
²⁴⁷ Cm	5,10	5,28			
²⁴⁸ Cm	5,64	5,88			
²⁴⁹ Cm	14,55	14,65			
²⁵⁰ Cm	8,27	8,58			
²⁴⁹ Bk	16,04	15,89			
²⁵⁰ Bk	28,67	28,78			
²⁴⁹ Cf	7,28	7,29			
²⁵⁰ Cf	27,21	27,10			
²⁵¹ Cf	27,84	27,89			
²⁵² Cf	9,49	9,87			
²⁵³ Cf	7,46	7,75			
²⁵⁴ Cf	22,17	22,60			
²⁵³ Es	5,60	5,77			
254 Es	19,81	20,13			

Как видно из таблицы 4, для топливных зон среднеквадратичные отклонения ядерных концентраций нуклидов практически совпадают, тогда как для зон воспроизводства разница больше. Это можно объяснить тем, что в топливных зонах практически одинаковый спектр нейтронов и одинаковый начальный изотопный значения состав топлива, поэтому погрешностей ядерных концентраций практически совпадают. Аналогично и зоны воспроизводства имеют схожий спектр нейтронов и одинаковый начальный изотопный состав топлива. Однако здесь разница в погрешностях ядерных концентраций выражена в большей степени. Разница между топливной зоной и зоной воспроизводства еще больше. В первую очередь это связано с различием изотопного состава свежего топлива. Для зон воспроизводства среднеквадратичные отклонения ядерных концентраций нуклидов в основном выше, за исключением некоторых нуклидов ^{232,233,235,238}U, ²³⁸Np, ²³⁷Pu, ^{242m}Am и ²⁵⁰Bk. Для основных изотопов урана и плутония погрешности накапливаются по мере выгорания топлива, тогда как для большинства минорных актинидов уменьшаются.

Из таблицы 5 видно, что для рассматриваемых топливных зон среднеквадратичные отклонения ядерных концентраций актинидов практически одинаковы. Это можно объяснить тем, что в этих зонах спектр нейтронов практически одинаков. Начальный изотопный состав топлива различается лишь степенью обогащения топлива и наличием Gd в твэлах, что не оказывает значительного влияния на погрешности в ядерных концентрациях актинидов.

Также с помощью настоящей методики определены сечения, которые имеют наибольшее влияние на погрешности для наиболее важных актинидов, с помощью расчета показателей чувствительности для всех топливных зон и зон воспроизводства. Реакция радиационного захвата на ²⁴⁰⁻²⁴²Pu, ²⁴¹Am и ²⁴³Am играет наиболее важную роль. Затем полученные данные используются для определения погрешностей сечений, обеспечивающих предсказания ядерных концентраций нуклидов с заданной точностью без учета корреляций погрешностей с помощью процесса минимизации в программном коде SNOPT.

В таблице 6 представлены требования к уменьшению погрешностей одногрупповых сечений, которые необходимы для достижения целевых показателей точности ядерных концентраций основных актинидов на уровне 5% для ТВС реакторов ВВЭР-СКД и ВВЭР-1200. Хотя это значение достаточно условно, оно соответствует стандартным требованиям, предъявляемым к конструкции реактора на ранних этапах разработки.

		Реакция	Погрешности одногрупповых сечений, %						
	Нуклид		BBЭ	Р-СКД	ВВЭР-1200				
			Имотониноод	Требу	емые	Имеющиеся	Требуемые		
			имеющиеся	Топл.3	HT3B				
	²³⁴ U	(<i>n</i> , <i>y</i>)	31,0	-	-	32,0	23,5		
	²³⁸ U	(n, 2n)	16,0	-	-	28,0	8,9		
	²³⁸ Pu	(n, f)	35,5	-	16,9	35,5	15,3		
	²⁴⁰ Pu	(<i>n</i> , <i>y</i>)	18,1	8,7	6,1	10,9	4,2		
	²⁴¹ Pu	(n, f)	20,2	14,5	3,2	8,3	2,5		
		(<i>n</i> , <i>y</i>)	37,9	15,2	3,7	18,8	7,9		
	²⁴² Pu	(<i>n</i> , <i>y</i>)	36,8	4,5	2,8	25,2	3,1		
	²⁴¹ Am	(<i>n</i> , <i>y</i>)	35,6	6,5	6,3	30,5	5,6		
	²⁴³ Am	(<i>n</i> , <i>y</i>)	33,9	11,5	8,7	20,1	8,8		
	²⁴² Cm	(<i>n</i> , <i>y</i>)	40,5	19,2	14,3	40,5	18,8		
	²⁴³ Cm	(<i>n</i> , γ)	42,6	26,3	20,2	32,5	25,7		
	²⁴⁴ Cm	(<i>n</i> , γ)	45,5	17,5	11,2	42,7	14,4		
	²⁴⁵ Cm	(n, f)	33,2	23,2	13,5	26,5	17,2		
	CIII	(<i>n</i> , γ)	39,7	21,4	16,2	36,4	20,3		

Таблица 6 – Требования к уменьшению погрешностей одногрупповых сечений для соответствия целевой точности ТВС реакторов ВВЭР-СКД и ВВЭР-1200

В таблице приведены принятые во внимание в процедуре корректировки нейтронные константы, неопределенности которых вносят наибольший вклад в погрешности концентраций основных актинидов. Во многих случаях были получены очень строгие требования для достижения целевой точности (например, погрешности сечений для ²⁴¹Pu и ²⁴²Pu необходимо уменьшить приблизительно в 10 раз).

Заложенная в программу VisualBurnOut методика дает возможность получить величины раздельных вкладов в погрешность расчета за счет отдельных типов сечений и нуклидов. Рассмотрение величин вкладов и определение наиболее

значимых дает возможность поставить задачу о повышении точности расчетов путем планирования проведения дополнительных экспериментов, направленных на уточнение тех или иных ядерно-физических констант.

Таким образом, созданное программно-методическое обеспечение может служить проверенной базой для оценки точности расчетного предсказания изотопного состава топлива объектов ЯЭУ новых поколений на основе анализа накопленного опыта расчетных исследований.

Хотя в настоящее время полнота и точность оцененных нейтронных данных неизмеримо возросли, тем не менее погрешности расчетных предсказаний, обусловленные неточностью знания нейтронных данных, остаются неприемлемо большими.

Поэтому постановка задачи развития, совершенствования и создания нового поколения системы кодов и константного обеспечения для расчетного обоснования ЯЭУ является и еще многие годы будет являться весьма актуальной.

ЗАКЛЮЧЕНИЕ

В рамках программного комплекса VisualBurnOut была разработана методика, предназначенная для расчета выгорания топлива и оценки константной погрешности ядерных концентраций нуклидов. Погрешности рассчитываются с помощью метода вариации исходных данных. Корректность предложенного метода была проверена на основе модельных задач и статистического подхода.

Программный комплекс верифицирован применительно к модели ячейки реактора PWR, используемой в качестве международного бенчмарка. Погрешности в ядерных концентрациях, полученные для некоторых нуклидов, были сравнены с исследований. Выявлено, что среднеквадратичные результатами других отклонения в ядерных концентрациях нуклидов, вызванные погрешностями в одногрупповых нейтронных сечениях и потоке нейтронов, сложным образом времени выгорания. По мере выгорания топлива поведение зависят от среднеквадратичных отклонений не всегда монотонно И зависит ДЛЯ рассматриваемого нуклида от источника неопределенности, типа скорости

реакции, ядер-предшественников. Материальный состав топлива играет ключевую роль в разнице между среднеквадратичными отклонениями в ядерных концентрациях нуклидов.

Данная методика позволяет выявить типы ядерных реакций, неопределенности сечений которых оказывают наибольшее влияние на погрешность в оценке ядерных концентраций нуклидов.

Получены оценки погрешностей ядерных концентраций наиболее значимых актинидов в конце кампании для моделей ТВС реакторов ВВЭР-СКД и ВВЭР-1200. Эти погрешности обусловлены неопределенностями в используемых одногрупповых сечениях. Чтобы достичь целевых показателей точности при расчете ядерных концентраций основных актинидов, необходимо значительно уменьшить неопределенности в одногрупповых сечениях.

Результаты оценки погрешностей помогают нам разработать рекомендации по наиболее эффективной стратегии снижения неопределенности в ядерных данных. Исследования неопределенности в этой области могут быть полезны для обмена информацией со специалистами, занимающимися оценкой ядерных данных. Это позволит им выявить области, где все еще имеются значительные недостатки, и определить, какие эксперименты необходимо провести или на каких теоретических исследованиях следует сосредоточить внимание.

Данное исследование вносит свой вклад в развитие методологии оценки различных неопределенностей, возникающих в процессе нейтронно-физических расчетов.

Список работ, опубликованных по теме диссертации

Публикации в изданиях, рекомендованных ВАК России:

- Писарев А.Н., Колесов В.В. Исследование переноса неопределенностей в ядерных данных на ядерные концентрации нуклидов в расчетах выгорания. // Известия вузов. Ядерная энергетика. – 2020. – № 2. – С. 108-121.
- 2. Писарев А.Н., Колесов В.В., Колесов Д.В. Влияние погрешностей в плотности потока нейтронов на погрешности ядерных концентраций

нуклидов, возникающие в процессе расчета выгорания топлива в ячейках с различным спектром нейтронов. // Известия вузов. Ядерная энергетика. – 2022. – № 2. – С. 128-137.

- Колесов В.В., Писарев А.Н. Проверка возможности использования вариационного метода для оценки погрешностей ядерных концентраций в задаче выгорания. // Известия вузов. Ядерная энергетика. – 2023. – № 1. – С. 153-161.
- Писарев А.Н., Колесов В.В., Котов Я.А., Невиница В.А., Фомиченко П.А. Об оценке неопределенностей ядерных концентраций минорных актинидов при расчетах выгорания топлива в ТВС реактора ВВЭР-СКД. // ВАНТ Серия: Ядерно-реакторные константы. – 2022. – №4. – С. 35-45.